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Interactive spatial scale effects on 
species distribution modeling: The 
case of the giant panda
Thomas Connor1, Andrés Viña1,2, Julie A. Winkler   3, Vanessa Hull4, Ying Tang3, 
Ashton Shortridge3, Hongbo Yang1, Zhiqiang Zhao1, Fang Wang2, Jindong Zhang5, 
Zejun Zhang5, Caiquan Zhou5, Wenke Bai5 & Jianguo Liu1

Research has shown that varying spatial scale through the selection of the total extent of investigation 
and the grain size of environmental predictor variables has effects on species distribution model (SDM) 
results and accuracy, but there has been minimal investigation into the interactive effects of extent 
and grain. To do this, we used a consistently sampled range-wide dataset of giant panda occurrence 
across southwest China and modeled their habitat and distribution at 4 extents and 7 grain sizes. We 
found that increasing grain size reduced model accuracy at the smallest extent, but that increasing 
extent negated this effect. Increasing extent also generally increased model accuracy, but the models 
built at the second-largest (mountain range) extent were more accurate than those built at the largest, 
geographic range-wide extent. When predicting habitat suitability in the smallest nested extents 
(50 km2), we found that the models built at the next-largest extent (500 km2) were more accurate 
than the smallest-extent models but that further increases in extent resulted in large decreases in 
accuracy. Overall, this study highlights the impacts of the selection of spatial scale when evaluating 
species’ habitat and distributions, and we suggest more explicit investigations of scale effects in future 
modeling efforts.

Spatial scale has long been recognized as important to consider in ecological research1. It varies along two main 
dimensions - grain, the spatial size of individual samples, and extent, the total area under study2. Because changes 
in the spatial scale of a study may result in complex effects that vary by species and system3,4, it is an important 
factor to consider when investigating habitat and species distributions5. Empirical investigations of the effects of 
spatial scale are not only rare, but also mainly involve varying the “local extent” surrounding a species or individ-
ual location within which environmental data are averaged4,6. While this may constitute an effective way to study 
the effects of spatial scale on species distributions and habitat selection, the effect of varying the local extent itself 
is constrained by both the grain size of the included environmental variables and the total extent of the study area. 
It has also been commonplace to select the grain size of a study a priori and without any kind of optimization, 
usually based on expert opinion and/or the format of the available data needed for modeling7,8.

One of the main reasons behind the usage of varying spatial scales between studies is that the goals of habitat 
modeling for a species can vary widely, ranging from investigations on the within-home range habitat selection of 
individual animals9 to the delineation of a species’ entire distribution10. These goals directly relate with Johnson’s 
(1980) four orders of habitat selection, which in descending order include geographic range, home range, dif-
ferential space use within the home range, and the final procurement of resources11. Investigations into these 
different orders of habitat selection largely drive the spatial scale used in a given study. These are most apparent 
through changes to the total extent of analysis (a home range compared to a species’ geographic range), but they 
also influence the grain through the common use of coarser climate variables8 and lack of computational power 
for fine grains in studies of fourth-order (geographic range) processes12. Recent work to integrate multiple orders 
of habitat selection simultaneously through varying the local extent of included environmental predictor data 
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and hierarchically modeling selection has shown that species may respond to environmental variables differently 
between orders and/or between scales within orders4,13.

Another key driver of the scale of analysis in habitat and species distribution modeling is data availability. The 
grain size influences which environmental predictor variables can be included in modeling efforts. In general, 
data availability, such as the accessibility of climate observations and simulations of future climate14,15 is greater at 
larger grain sizes that become relevant at larger extents. The varying resolution of available datasets often results 
in the spatial aggregation of variables with smaller grain sizes to match the coarser scales of the other variables, 
or the interpolation of variables of larger grain sizes to match the finer resolution of the other variables7, with 
the latter approach increasing their spatial autocorrelation16. In addition to impacts on environmental variables, 
spatial aggregation to coarse scales can also affect the presence dataset used in the habitat modeling of the species 
in question (Fig. 1). For instance, data collected at a fine scale with points falling within 30 meters of one another 
may fall in different 30 m cells but the same aggregated 60 m cell. Potential impacts are exacerbated when cells 
are only defined as presence or absence, ignoring the number of points within a cell, the default option for the 
popular MaxEnt software17 and any species distribution model for which the species input is binary (presence or 
absence for a given location). The potential tradeoffs in model performance that occur with the aggregation of 
some variables to allow for the addition of others, and how this interacts with changes in the extent of analysis, is 
another scale-related topic that has been understudied.

While there have been empirical studies evaluating the effects of grain size18–21 and total study extent22,23 on 
habitat and species distribution modeling, little research has looked at the interactive effects of these components. 
Seo et al. (2009) examined the effects of grain size on distribution models of species with different range sizes 
(i.e., total extents), although they did not vary the total extent of analysis within a given species24. They found that 
model results of species with intermediate range sizes were more sensitive to changes in grain size compared to 
species with large or small ranges. Although Trivedi et al. (2008) built models at multiple grains and total extents, 
the sampling designs of the datasets used in the analysis varied for the different scales making direct compari-
sons difficult25. Khosravi et al. (2016) varied the grain size of their environmental predictors in addition to the 
local extent around each presence and background cell within which they averaged those predictors in modeling 
goitered gazelle distributions and found intermediately-sized grains and local extents to be most accurate, but 
they did not vary the total extent of the area modeled26. To the best of our knowledge, only one previous study 
varied both grain size and total extent, in which only two coarse grains (1 km and 10 km) and two broad extents 
(Africa and West Africa) were used. The smaller 1-km grain size at the regional (as opposed to continental) extent 
was found to best capture the distributions of three widespread African species (Patas monkey, bull frog, and 
rock hyrax) at the edge of their range27. A deeper analysis of the interactive effects of the total extent and grain 
size of environmental variables on habitat and species distribution modeling is crucial, since the range of scales 
used to model habitat or species distributions can vary considerably (e.g. total extents of 40 km2 to 66,456 km2 
and grain sizes of 30 m to 1,000 m for giant pandas9,10,28), with potentially important effects on model accuracy 
and sensitivity.

To address these knowledge gaps, here we evaluate the effects of simultaneously changing the grain size and 
total extent, as well as the use of different environmental predictor variables, on habitat suitability and species 
distribution modeling of a demonstration species, the giant panda (Ailuropoda melanoleuca). Due to their elusive 
nature and protected status, there are still many uncertainties about giant panda behavior in the wild29. Although 
there have been numerous studies on giant panda habitat selection and distribution, there are still many discrep-
ancies concerning the relative importance of and responses to different environmental variables used to model 
their habitat30. Like most species, there has also been little investigation into spatial scale effects, which may 
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Figure 1.  Visual representation of increasing spatial scale along two main axes – total extent and grain size. 
Percent forest is characterized at 4 extents and 4 grain sizes in an area around the middle of the giant panda 
range, with giant panda presence cells depicted with a hatch pattern. The red squares in rows 2 to 4 indicate the 
previous total extent shown in the previous row. Note: these are not the total extents examined in this study, they 
are purely a visual demonstration of the effects of changing spatial scale on environmental and presence data.
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account for some discrepancies seen in the literature. Giant pandas also serve as an effective case study to test for 
interactive spatial scale effects on habitat and distribution modeling, particularly of habitat specialist species, due 
to their dependence on understory bamboo and sensitivity to human disturbances29,31. Any evidence of interac-
tive scale effects on model performance, as well as scale interactions with environmental variable selection, will 
have important implications for both giant panda research and species distribution modeling in general and will 
imply that spatial scale needs to be explicitly considered for effective research and conservation.

Methods
Study area and extents.  We chose four different total extent sizes to model panda distributions consisting 
of 50 km2, 500 km2, the mountain ranges containing these extents (mean area of 18,264 km2) and the entire geo-
graphic panda range of approximately 109,585 km2 (Table 1, Fig. 2). The nested structure of these extents allowed 
for replication of the smaller three within the largest. Specifically, the total geographic range was gridded into 
50 km2 blocks, and those with at least 20 panda presence locations were selected for modeling (n = 68). Several 
of these were then randomly selected to be buffered so that there was n = 9 non-overlapping total extents of 500 
km2. Finally, distinct mountain ranges that contained one or more of these 500 km2 total extents were selected as 
replicates of the third total extent (n = 4).

Environmental variables and grain sizes.  We chose environmental predictors based on their biologi-
cal significance for pandas, as well as data availability. Our base model included elevation, slope, percent forest, 
distance to a main road, and distance to a stream or river (Table 2). Main road and stream/river data were 
obtained at a scale of 1:250000 from the Chinese National Fundamental Geographic Information Database, 

Total 
extent Total extent 1 (50 km2) Total extent 2 (500 km2)

Total extent 3 (Mountain ranges, mean 
18,264 km2

Total extent 4 (Geographic range, 
109,585 km2)

Grain 
size (m)

Mean presence 
cells (SD)

Mean Prevalence 
(SD)

Mean presence 
cells (SD)

Mean Prevalence 
(SD)

Mean presence 
cells (SD)

Mean Prevalence 
(SD)

Mean presence 
cells (SD)

Mean Prevalence 
(SD)

30 30.5 (11.3) 5.5E-04 (2.0E-03) 154.4 (77.8) 2.5E-04 (1.2E-04) 1137.6 (845.1) 3.3E-05 (2.4E-05) 4707 (129.0) 9.3E-06 (2.5E-07)

60 25.4 (6.1) 1.8E-03 (4.0E-04) 153.7 (77.3) 9.7E-04 (4.9E-04) 1130.9 (837.9) 1.3E-04 (9.6E-05) 4679 (128.1) 3.7E-05 (1.0E-06)

120 24.8 (5.9) 7.1E-03 (1.7E-03) 151.1 (75.8) 3.9E-03 (2.0E-03) 1113.1 (822.9) 5.1E-04 (3.8E-04) 4613.8 (126.2) 1.5E-04 (4.0E-06)

240 22.9 (5.7) 0.03 (6.5E-03) 144.3 (71.6) 0.01 (7.3E-03) 1065.7 (776.5) 2.0E-03 (1.4E-03) 4423.3 (109.7) 5.6E-04 (1.4E-05)

480 19.8 (5.1) 0.09 (0.02) 127.9 (60.5) 0.05 (0.02) 952.1 (676.0) 7.0E-03 (5.0E-03) 3975.3 (85.0) 2.0E-03 (4.3E-05)

960 14.5 (4.0) 0.26 (0.07) 98.7 (43.9) 0.16 (0.07) 753.3 (509.8) 0.02 (0.01) 3159.3 (57.9) 6.4E-03 (1.2E-04)

1920 8.1 (2.9) 0.67 (0.24) 62.3 (23.8) 0.40 (0.15) 516.7 (323.1) 0.06 (0.04) 2172 (29.1) 0.02 (2.4E-04)

Table 1.  The number of presence cells and their prevalence (presence cells divided by the total cells used) at 
each extent and grain size.

Extent 3 (Mountain ranges)

Extent 2 (500 km^2) Extent 1 (50 km^2)

Extent 4 (Geographic range)

Figure 2.  Total extents used in the analysis of scale effects on modeling giant panda habitat suitability and 
distribution. The smallest total extent was replicated 68 times, total extent 2 was replicated nine times, and total 
extent 3 was replicated four times across the current panda geographic range, which served as total extent 4.
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maintained by the National Geomatics Center of China32. The smallest available grain size for elevation was a 
digital elevation model (DEM) of 30 m, obtained through NASA’s SRTM mission33. Slope was derived from this 
DEM in ArcGIS 10.4. Percent forest was obtained from the global dataset developed by Hansen et al. (2013) 
at a grain size of 27 m34. These data were resampled to 30 m using bilinear interpolation, while the distance 
variables were calculated using a grain size of 30 m. We then successively spatially aggregated these variables 
by a factor of 2 using the mean of the smaller cells to develop 6 additional sets of predictors of increasing grain 
size. We also did the analyses using the median value of the smaller cells, which had nearly identical results. 
For each of the 4 extents, we thus included the same environmental variables at 7 different grain sizes ranging 
from 30 to 1920 m (Table 2).

At the grain size of 240 m, we also built models that included 11 MODIS-derived land surface phenology 
metrics that have been used to accurately predict bamboo35 and giant panda36 distributions. These 11 metrics 
describe the timing and magnitude of phenophases of the land surface35. Many of these metrics are highly corre-
lated (r > 0.9). To avoid multi-collinearity issues37, we conducted a principal component analysis (PCA) on the 11 
metrics and used the first five components (explaining over 99% of the variation) as environmental variables in 
our models. We resampled these first five components from native MODIS resolution of 250 m to the grain size 
of the coarsened base variables at 240 m using bilinear interpolation. We then aggregated this new set of envi-
ronmental variables in the same manner as before to derive 3 additional sets of variables at 480, 960, and 1920 m 
(Table 2). The MODIS-derived phenology variables were averaged from satellite data acquired in 2000–2002, the 
main sampling years of the 3rd National Giant Panda Survey38.

Finally, for the habitat modeling at the 960 and 1920 m grain sizes, we trained models that additionally 
incorporated remotely sensed climate variables. The source of the climate information was the Deblauwe et al. 
(2016) dataset of bioclimatic variables derived from remotely-sensed measurements with a ~6 km resolution39. 
Tang et al.15 later interpolated these measurements to a 1 km resolution using an inverse weighted distance 
approach, which we also used. Five bioclimatic variables were selected based on their ecological meaning for 
giant pandas and lack of collinearity15. These included annual mean temperature, temperature seasonality, 
temperature annual range, annual precipitation, and precipitation seasonality. We resampled the climate data 
using bilinear interpolation to match the 960 m grain size, and once again aggregated by a factor of 2 using a 
mean function to produce the final set of environmental variables at 1920 m (Table 2). Like the phenology var-
iables, the satellite-derived bioclimatic variables were averaged between the years of 2000 and 2002 to capture 
the conditions found during the 3rd National Giant Panda Survey.

Giant panda presence data.  To model giant panda habitat at different scales, we used presence data from 
the 3rd National Giant Panda Survey38. These data were collected between 2000 and 2003 across the current giant 
panda geographic range and consist of georeferenced locations that had signs of giant panda presence (e.g., feces, 
hair; State Forestry Administration 2006). The sampling technique involved placing line transects within 2 km2 
grid cells across the entire known panda range and searching for panda signs along these transects. For the 30 m 
grain size, the smallest extent replicates had a mean of 30.5 (SD = 11.3) presence cells, replicates for the second 
extent level had a mean of 154.4 (SD = 77.8) presence cells, replicates for the third level had a mean of 1137.6 
(SD = 845.1) presence cells, and the total range (extent 4) had 4707 presence cells (Table 1).

Habitat suitability modeling.  Because only giant panda presence data were available for this analysis, we 
ran MaxEnt17 models for the various sets of predictor variables at different grain sizes and total extents. MaxEnt 
makes use of machine learning techniques to derive a probability distribution of environmental suitability across 
a landscape from the environmental predictor variables17. The algorithm attempts to minimize the relative 
entropy in the predicted suitability between presence locations and background locations40. We used 10,000 ran-
domly sampled points from within the precise polygon for a given total extent to serve as background locations 
to the models. At the smaller total extents, limited cells in the larger grain sizes resulted in all of the raster cells 
of the environmental predictors serving as background data. For example, the models built at the smallest total 
extent and with the 1920 m grain size only had a total of 12 cells. We selected background points only from areas 
in which a panda could feasibly occur41, which we defined as below 3600 m in elevation due to the lack of bamboo 

Variable name (unit) Grain sizes (m)

Elevation (m) 30, 60, 120, 240, 480, 960, 1920

Slope (degrees) 30, 60, 120, 240, 480, 960, 1920

Percent forest (%) 30, 60, 120, 240, 480, 960, 1920

Distance to main road (m) 30, 60, 120, 240, 480, 960, 1920

Distance to stream (m) 30, 60, 120, 240, 480, 960, 1920

MODIS phenology metrics* 240, 480, 960, 1920

Annual mean temperature (°C * 10) 960, 1920

Temperature seasonality (standard deviation * 100) 960, 1920

Temperature annual range (max temp – min temp) 960, 1920

Annual precipitation (mm) 960, 1920

Precipitation seasonality (coefficient of variation) 960, 1920

Table 2.  Summary of environmental variables and grain sizes used in the study. *MODIS phenology metrics 
used in the models were reduced to five principal components using PCA.
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in alpine areas. We used a k-fold partitioning design to develop five different random combinations of training 
(80%) and testing (20%) data for model input at every grain size and extent.

To evaluate each model, we calculated the Area under the Receiving Operating Characteristic Curve (AUC), 
which measures the ability to discriminate between observed presence and background grid cells. Due to crit-
icism of AUC as an accuracy metric that may result in inflated and spurious values42,43, we also calculated True 
Skill Statistics (TSS) and correlation coefficients between the predicted suitability values at test presences vs. 
background locations obtained from each model (hereafter referred to as ‘correlation coefficient’). TSS is advan-
tageous in our case due to its independence from prevalence44 (which changes across extent and grain, Table 1), 
and we calculated it at the threshold for conversion of the predicted probability surface into a binary presence and 
absence surface that maximized its value (i.e., maximum TSS).

Replication of the smaller total extents allowed us to examine the effect of a given study area’s placement on 
the environmental gradients (e.g., latitude, percent forest) found across the panda range, and if this modified the 
effect of total extent and/or grain. We calculated the mean value of every environmental predictor within every 
total extent replicate to determine that extent’s placement on the environmental gradient for each respective pre-
dictor. In a similar manner, we were able to determine if the amount of environmental heterogeneity (e.g., eleva-
tion, percent forest) in a given study area had an impact on the effect of total extent/grain size on model accuracy. 
We calculated the standard deviation of every environmental predictor within every study area to represent the 
environmental heterogeneity for a given predictor in each respective total extent replicate.

We also evaluated the performance of models built at larger total extents in predicting habitat suitability in 
the smallest total extent nested within those larger total extents. This was done for the nine smallest extent repli-
cates that were buffered to produce the next total extent. This allowed us to determine the relationship between 
increasing total extent and predictive accuracy using the same test area and data in each case. We also produced 
predicted habitat suitability maps to visually compare the results of each model. This analysis was done using the 
base models at the 30-m grain size.

To further evaluate the tradeoffs associated with the addition of the MODIS and climate variables at the larger 
grain sizes, we compared model parsimony using Akaike’s Information Criterion45 corrected for small sample 
sizes (AICc). This measure is particularly important when evaluating models with a different number of variables, 
as it incorporates a penalty for additional explanatory variables and overfitting the model46. AICc cannot effec-
tively evaluate between models of different total extent or grain size, however, because changing either of these 
components of spatial scale changes the sample locations included in the model, thus making the information 
criterion uncomparable47.

To evaluate the effects of environmental predictors on the various models at different scales, we conducted 
permutation importance tests17. The permutation test slightly changes the values of each environmental variable 
among the training presence and background points, and measures the loss in AUC through this process. This 
was done for each variable separately, and the final values were normalized to percentages. We also produced 
environmental response plots for each variable to visualize their effects on habitat suitability and how these effects 
changed across scales, suites of variables, and study areas.

In summary, base models were built at seven different grain sizes, base + phenology models were built at 
four different grain sizes, and base + phenology + climate models were built at two different grain sizes. These 
models were built within all replicates of the four total extents. All reported statistics (e.g., AUC, TSS, AICc) are 
a result of averaging the five training/testing model runs. All these analyses utilized the ‘dismo’ package in the R 
environment48,49.

Results
The accuracy of the models generally increased with increasing total extent and the addition of environmental 
variables at coarser grains. Increasing grain size in the smallest total extent decreased accuracy, as measured by 
the max TSS, but this effect was lost in the three larger total extents (Fig. 3). The AUC and correlation coefficient 
results mirrored the max TSS except that increasing grain size reduced accuracy in total extent 2 in addition 
to the smallest extent (Fig. S1). The placement of a given study area along some environmental gradients had a 
strong effect on accuracy, and this placement also moderated the effect of total extent on accuracy. For example, 
the accuracy of models using the base set of variables generally decreased with increasing forest cover, but this 
decrease occurred at different rates across the different total extents so that their accuracies converged at about 
75% forest cover (Fig. 4). A similar pattern emerged with increasing latitude in extents 2 and 3, but little to no 
effect was seen across the elevation and mean annual temperature gradients (Fig. S2). Clear effects of grain size on 
model accuracy across environmental gradients were not evident, as changes in accuracy showed nearly the same 
trend across all grain sizes (Fig. S3). Increasing environmental heterogeneity within a given study area resulted 
in increased model accuracy, but did not appear to moderate the effects of either total extent or grain size (except 
for the 1920-m grain) (Figs S4 and S5).

The models built at different total extents resulted in different suitability predictions of the smallest (total extent 1)  
study areas nested within them (Fig. 5). The second-smallest total extent models had the highest accuracy when 
predicted to smallest total extent area (mean max TSS = 0.58 (SD = 0.17), mean AUC = 0.78 (SD = 0.13), followed 
by the smallest extent models (mean max TSS = 0.57 (SD = 0.20), mean AUC = 0.76 (SD = 0.13), the second-largest 
total extent models (mean max TSS = 0.48 (SD = 0.15), mean AUC = 0.71 (SD = 0.11), and finally the largest total 
extent models (mean max TSS = 0.39 (SD = 0.18), mean AUC = 0.64 (SD = 0.15)). The predicted suitability maps 
of these models were qualitatively very different, with the most accurate models producing predictions that had a 
more pronounced difference between high and low suitability areas while the largest total extent models produced 
predictions with a “smoothed” appearance (Fig. 5).

Increasing grain size in order to incorporate the additional phenology and climate variable sets at the 240 m 
and 960 m grains, respectively, resulted in improved model accuracy in the larger two total extent sizes but had 



6Scientific Reports |         (2019) 9:14563  | https://doi.org/10.1038/s41598-019-50953-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

no significant effect at a 95% confidence interval in the smaller two total extent sizes (Fig. 3). The AICc rankings 
generally agreed with the accuracy metrics, with the addition of phenology and climate variables resulting in 
higher ranked models at the two largest total extents, but generally lower ranked models across the replicates of 
the two smallest total extents (Table 3).

The contribution of individual environmental variables to the models, as measured by the permutation impor-
tance tests, varied with total extent and grain. For example, although elevation was important to the models incor-
porating the base variables at the smallest total extent, with an average of about 40% permutation importance, 
this increased to about 60% permutation importance for the base models at three larger total extents (Fig. 6). 
Conversely, the distance to road variable lost importance as total extent increased with average values of 22, 
17, 10, and 7% importance in base models trained at smallest to largest total extents, respectively. Similar losses 
occurred in slope and distance to river variables with increasing total extent. Though the permutation importance 
of most variables did not change much with increasing grain size, elevation tended to lose importance and per-
cent forest tended to gain importance (Fig. 6). Elevation also lost importance with the incorporation of phenology 
and climate variable sets at the 240 and 960 m grain sizes, respectively (Fig. S6). Mean annual temperature proved 
particularly important to the models built at the second-largest (mean permutation importance of 17%) and 
largest (permutation importance of 33%) total extents.

Predicted suitability responses to the environmental variables changed considerably across the replicated 
study areas, and to a lesser extent due to changes in scale. For example, although there was generally a positive 
response to forest cover across the replicates of the smallest total extent, the magnitude of the effect varied and in 
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Figure 3.  The effect of total extent, grain size, and variable combination on model accuracy (measured by the 
maximum True Skill Statistic (TSS)). Different variable combinations are presented in different panels - “Base” 
models include elevation, percent forest, slope, distance to main road, and distance to stream variables, “Base.
Pheno” models include these five variables plus five phenology variables derived from MODIS data and PCA, 
and “Base.Pheno.Clim” models include all of these variables in addition to the five bioclimatic variables listed in 
Table 2.
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some areas there was zero effect (Fig. S7). Many of the models built in the replicates of the smallest total extent 
featured different environmental response curves than the models built in the larger total extents in which they 
were nested, while those models built at the larger total extents featured similar environmental responses to 
each other. The effect of the distance to road variable on environmental suitability is a good example of this, with 
increasing distance to roads resulting in clear positive effects in the models built at larger total extents but varied 
effects in the models at the smallest total extent (Figs 7 and S8). Increasing grain size tended to result in losses in 
detail in the environmental responses, with some variables having little to no effect on suitability at the 1920-m 
grain size (Fig. 7).

Discussion
Our results highlight the interactive and potentially large effects of spatial scale on species distribution modeling. 
Unlike previous studies, ours is the first to use a single, comprehensive presence dataset to investigate these effects 
along both main dimensions of spatial scale – total extent and grain size. Models built and validated at larger total 
extents generally had higher accuracies, likely because as total extent increases, so does the amount of presence 
data and the range of the environmental variable values used to model habitat. More presence data allows the 
models to better approximate the response of a species to the environment, though MaxEnt has been shown 
to produce accurate predictions at low sample sizes50,51. Perhaps more important is the fact that, at larger total 
extents, a larger range of environmental predictor values allows the models to better differentiate between areas 
of low and high suitability at that given total extent22.

A potential exception to these relationships is a situation in which a species’ response to its environment 
changes significantly across its geographic range52. In this case, a single model with fixed parameters may not be 
appropriate to describe the responses of individuals to their environment in different populations across their 
geographic distribution. Our results confirm this phenomenon for the giant panda, as the models trained in the 
replicates of the second-largest total extent (representing individual mountain ranges) had higher accuracies than 
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Figure 4.  The effect of the position of a study area along an environmental gradient (percent forest cover) on 
model accuracy, as well as its impact on the effect of total extent on model accuracy. Evaluation scores of models 
built at different total extents are represented by different colors and differently sized circles.
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Extent 1 model Extent 2 model

Extent 3 model Habitat suitability Extent 4 model

Mean max TSS=0.58 (SD=0.17)Mean max TSS=0.57 (SD=0.20)

Mean max TSS=0.48 (SD=0.15) Mean max TSS=0.39 (SD=0.18)

Mean AUC=0.76 (SD=0.13) Mean AUC=0.78 (SD=0.13)

Mean AUC=0.71 (SD=0.11) Mean AUC=0.64 (SD=0.15)

Figure 5.  Giant panda habitat suitability predictions of one of the study area replicates of the smallest extent 
produced by models using the base variables at the 30-m grain size and trained at increasingly larger extents. 
Accuracy statistics for models trained at a given total extent are reported under the predicted suitability maps 
produced by that respective model.

Comparison

Total extent 1 Total extent 2 Total extent 3 Total extent 4

− +
No 
change − +

No 
change − +

No 
change − +

No 
change

Base: Base + Phenology 0.63 0.23 0.14 0.84 0.14 0.02 0.36 0.64 0 0 1 0

Base + Phenology: 
Base + Phenology + Climate 0.43 0.36 0.21 0.69 0.29 0.02 0.08 0.93 0 0 1 0

Base: 
Base + Phenology + Climate 0.53 0.29 0.18 0.84 0.13 0.02 0.05 0.95 0 0 1 0

Table 3.  Comparisons of parsimony between models containing different variable sets built at increasing 
extent. Proportions of model replicates that featured increased AICc values of greater than 2 and thus reduced 
parsimony (−), proportions of replicates that featured decreased AICc values of greater than 2 and thus 
improved parsimony (+), and proportions of replicates that featured changes in AICc values less than 2 and 
thus no change in parsimony (0) are presented.
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models trained at the entire geographic range. Because there is little to no dispersal among giant panda popula-
tions living in several of the different mountain ranges due to natural (e.g., large rivers) and anthropogenic (e.g., 
highways) barriers53, these populations have likely adapted to specific environmental conditions found in their 
respective mountain ranges. This suggests that the benefits associated with modeling at larger total extents (more 
presence locations, increased range of environmental variables) do not necessarily outweigh the negative effects 
associated with including populations with different environmental responses within the same model. Therefore, 
this effect should be tested in any geographic range-wide evaluation and depending on the results, predictions 
from models trained at a mosaic of total extents should be used as opposed to a single, geographic range-wide 
model. Alternatively, modeling techniques that allow for non-stationarity in environmental responses could be 
considered52.

Although grain size had a strong effect on model accuracy in models built at the smallest total extent with 
smaller grain sizes producing more accurate predictions, this effect was negated by increasing the total extent. 
Models built at the smallest total extent of 50 km2 were likely negatively affected by increasing grain because of 
the severe loss of presence and background cells with each aggregation in grain. By the largest grain size, there 
was only an average of 8 presence cells and 12 total background cells per 50 km2 study area. This resulted in large 
overlaps between presence and background environmental conditions and a weak signal between suitable and 
unsuitable habitat54. Our results suggest giant panda distributions at total extents of 500 km2 and higher can be 
accurately modeled using grain sizes up to 1920 m, however.

The method of aggregation could also impact model results – we repeated the analysis using the mean and 
median value of the smaller cells for the aggregated cell with nearly identical results, but within-cell variance is 
lost through these methods. Some variables may aggregate better using variance measures instead. For example, 
slope values at 30 meters can rapidly lose meaning when aggregated due to variable terrain. Replacing a mean 
slope aggregate with a standard deviation of elevation among the smaller cells55 would better represent terrain 
ruggedness. It is also important to note that even though accuracy of models built at large grain sizes may remain 
high in most cases, there are many situations in which they will not be useful. The decision to model at a certain 
total extent and grain size thus should take into account research objectives (e.g., an estimation of a species range 
allowing a larger grain vs. a detailed understanding of environmental drivers of habitat suitability a finer grain), 
in addition to model accuracy.

Our analyses of predictive accuracy of models trained on the first three total extents replicated across the 
panda range suggest that the placement of a given study area on some range-wide environmental gradients drives 
both model accuracy and modifies the effect of total extent on model accuracy. Using percent forest cover as an 
example, the decrease in model accuracy with increasing forest cover makes sense due to the loss of the clear 
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Figure 6.  Variable permutation importance values (in percent) for the variables included in the MaxEnt habitat 
suitability models incorporating the base variable set. Grain size is plotted on the x-axis and models built at the 
different total extents are separated by panel.
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habitat suitability differences found between cells with more forest and those with less forest. This likely partially 
explains the decrease in accuracy we found along an increasing latitudinal gradient (Fig. S2), with models trained 
in the larger study extents within the Qinling mountains (Northeastern most part of the panda range) featuring 
more forest and lower predictive accuracies. Our finding that increasing environmental heterogeneity resulted 
in more accurate models follows expectations – higher variation in these variables should allow the models to 
better differentiate between suitable and unsuitable habitat54. The fact that we did not find a relationship between 
these increases in environmental heterogeneity and the effect of grain size on model accuracy was unexpected, 
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however. This suggests that even grain sizes up to 1920 m capture enough of the environmental heterogeneity 
within study area replicates across the panda range to model habitat suitability with accuracy comparable to the 
finest grain sizes, regardless of the total level of environmental heterogeneity found within a given study area.

Recent developments in species distribution modeling beg more scale-related questions. The demonstration 
that MaxEnt is equivalent to an inhomogeneous Poisson process (IPP12) has resulted in the potential to incor-
porate the number of presence points within a cell in the modeling framework. The new open-source release 
of MaxEnt takes the IPP formulation and allows for the estimation of the relative abundance or probability of 
presence56. This has implications for the grain size used to represent the environment, as it replaces the binary 
presence/absence response with a count response which retains more information per cell as environmental 
data is aggregated to larger grain sizes. Specifically, as opposed to multiple occurrence points resulting in one 
presence cell, those points will be modeled as multiple observations of the species under the “same” environ-
mental conditions. The relationship between the spatial autocorrelation of presence points57 and the grain size of 
environmental variables in both the original and IPP formulation of MaxEnt is another important scale-related 
question that future research should address. The same question would apply to any species distribution modeling 
framework in which the response variable could be defined as binary or as counts (generalized linear models and 
other regression frameworks).

The performance of models trained at increasingly larger extents when predicting panda distribution in the 
smallest extent yielded interesting results. The models trained at the smallest total extent were slightly outper-
formed by the models trained at the next-largest total extent, suggesting that there may have been environmen-
tal responses detected by the latter models that proved important when predicting at the smaller, nested total 
extent. The models trained at two largest total extent models performed much worse than smaller total extent 
models, however, indicating that there is a tradeoff between more fully capturing environmental responses and 
over-generalizing these responses when increasing total extent. Our visual analysis of the resulting suitability 
predictions of the smallest total extent highlighted the differences in their spatial patterns. Because predictions 
became more aggregated with increasing total extent and lost the detailed differences between high and low suit-
ability areas, modeling at too large a total extent may have consequences for conclusions made about landscape 
connectivity. For example, the negative effects of roads are clear in the predictions of the models trained at the 
smaller total extents, but become increasingly smoothed with increases to total extent beyond 500 km2. This 
effect could result in researchers and managers to overestimate habitat connectivity across the landscape. The loss 
of fine-scale details in model predictions when using models built at a large total extent has been documented 
before22,27, but our study is the first to quantify the effect of increasing total extent on model accuracy across 
multiple total extents and present evidence that total extent can be optimized as larger than the area under inves-
tigation. Although previous research has indicated that total extent does not exhibit large effects on modeling 
landscape effects on connectivity58, our results have implications for modeling at landscape vs. local scales when 
attempting to model connectivity across high-disturbance areas. More investigation into these effects should be 
done with further testing of habitat models and movement data in the future.

A discussion of the effects of scale also informs knowledge on the ecology of giant pandas. In any ecological 
analysis of spatial scale, it is important to consider the relevance of the scales being analyzed to the species in 
question. As giant pandas generally use home ranges of around 5 km2, all of our total extents represented areas 
larger than a single panda would respond to, while our grain sizes varied from a maximum of about a single panda 
home range to a minimum of an area that would represent foraging habitat selection59. In terms of importance 
to the models, forest cover was relatively high at all total extents evaluated. Our finding that there was a generally 
positive effect of forest cover on habitat suitability at all extents and grain sizes (Fig. S9a) corroborates the widely 
accepted positive effect of forest on panda habitat in the literature60,61. That said, there has been recent evidence 
that pandas are able to utilize areas with bamboo but no forest cover9, and there were either neutral or even 
slightly negative suitability response curves to forest cover in a subset of replicates from all three smaller total 
extents that suggested this (Fig. S7).

The effects of roads on panda habitat suitability also varied across scale, and the decrease in importance of 
the distance to roads with increasing total extent suggests that the anthropogenic effects which accompany roads 
most strongly effect pandas at small scales. There was a high amount of variation in the suitability response 
to roads across the replicates of the smallest total extent, however (Fig. S8). Although most replicates featured 
models in which increasing distance to roads increased suitability, some featured models in which there was 
no response to roads and others saw a decreasing response. This likely reflects the large variation in traffic and 
roadside anthropogenic development that occurs across the panda range, and any positive road responses are 
likely due to more habitat availability in areas closer to roads. The expected negative responses to roads became 
more consistent in the models trained at increasing total extent sizes, confirming that positive responses are the 
exception.

The dominant variable in the models across most total extent/grain size combinations was elevation, which 
has long been accepted as important in modeling panda habitat60,62–64. Elevation itself is not directly important 
to panda habitat by itself, however, and is more of a proxy variable that relates with other factors such as climate 
variability65 (and in turn bamboo growth patterns) and anthropogenic disturbance. This is apparent in our study 
with the use of additional predictors like the five bioclimatic variables, which at the largest total extent reduced 
the importance of elevation from 60.7 to 15.3%. At the range-wide scale it was thus climatic factors that predicted 
habitat suitability better than elevation alone. At smaller total extents elevation likely represents the importance 
of local variations in climate due to topography and the importance it has on understory bamboo, while at larger 
total extents it is the regional variation in climate and both the physiological constraints and vegetation patterns66 
that determine panda distribution. This is an example where although elevation is an effective variable for habitat 
prediction, its usefulness for explaining ecological phenomenon by itself is limited.
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It is also important to consider the relevance and application to management when selecting different spatial 
scales. In the case of the giant panda, management occurs at total extents as small as parcels patrolled on foot, to 
entire nature reserves that approximate and sometimes exceed our 500 km2 extent67. Management also occurs 
at the provincial and national levels, approximating our third and largest total extents, respectively. This wide 
range in management hierarchies makes it important to consider the total extent at which panda distributions are 
modeled for a given question, which may not necessarily be better analyzed at the total extent of interest (e.g., our 
second-smallest total extent models best predicted the smallest total extent distributions while our second-largest 
total extent models were overall the most accurate when predicting to the total extent at which they were trained). 
We thus recommend, in addition to a priori consideration of scale, for researchers and managers to test for the 
effects of scale together with the use of additional variables on model performance. Optimizing the selection of 
spatial scale and variables in this manner will improve the use of species distribution modeling in both ecological 
research and wildlife management.

Data Availability
The environmental variables and R scripts used in the analysis will be deposited at https://issues.pangaea.de/
browse/PDI-21776. Because of confidentiality agreements with government collaborators due to the threatened 
status of the giant panda and the sensitivity of their locational information, we are unable to make the 3rd national 
giant panda survey location data publically available.
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